Feasibility study on the replacement of copper conductors with copper-cladsteel conductors in photovoltaic plants

Autores

  • Vinicius Maschio Minosso Universidade do Contestado
  • Tiago Volnei Picolotto Universidade do Contestado
  • Paulo Reis Junior Universidade do Contestado
  • Luana Cechin Universidade do Contestado
  • Mari Aurora Favero Reis Universidade do Contestado

DOI:

https://doi.org/10.21712/lajer.2025.v12.n2.p19-27

Palavras-chave:

Copper-clad steel conductor, sustainability,, photovoltaic power plant,, electrical conductivity.

Resumo

This study examines the technical and economic feasibility of replacing copper conductors with copper-clad steel conductors in the grounding systems of a commercial-scale photovoltaic plant. A literature review was conducted to identify existing applications, followed by an analysis of data from a photovoltaic complex where copper grounding conductors and rods were replaced by copper-clad steel. Results show that the substitution is feasible, maintaining grounding efficiency within regulatory standards, despite higher electrical resistivity. The change also results in cost reduction, increased mechanical strength, and lower risk of material theft, factors that support sustainability and operational safety. Further research is recommended on long-term performance and durability in different soil conditions. The findings suggest that copper-clad steel conductors are a promising alternative for large-scale photovoltaic applications, contributing to sustainable and cost-effective energy solutions.

Downloads

Os dados de download ainda não estão disponíveis.

Biografia do Autor

  • Vinicius Maschio Minosso, Universidade do Contestado

    Engenharia Civil pela Universidade do Contestado.

  • Tiago Volnei Picolotto, Universidade do Contestado

    Engenharia Civil pela Universidade do Oeste de Santa Catarina, especialização em Pós-Graduação Em Engenharia De Construção Civil pela Universidade do Oeste de Santa Catarina (2015). Foi professor na Universidade do Contestado durante o período da pesquisa.

  • Paulo Reis Junior , Universidade do Contestado

    Mestrado Profissional em Engenharia Civil, Sanitária e Ambiental pela Universidade do Contestado, Universidade do Contestado, Concórdia (SC), Brasil.

  • Luana Cechin, Universidade do Contestado

    Mestrado e Doutorado pela Universidade Tecnológica Federal do Paraná, Campus Curitiba, na área de concentração Construção Civil na linha de pesquisa Materiais e Componentes da Construção. Professora da Universidade do Contestado - UNC, no Programa de Mestrado Profissional em Engenharia Civil, Sanitária e Ambiental – PMPECSA.

  • Mari Aurora Favero Reis, Universidade do Contestado

    Doutorado em Ensino de Ciências e Matemática pela Universidade Luterana do Brasil (2019), professora no Programa de Pós-Graduação em Sistemas Produtivos (PPGSP - UNIPLAC, UNC, UNESC e UNIVILLE) e no Programa de Mestrado em Engenharia Civil Sanitária e Ambiental (PMPECSA) na Universidade do Contestado.

Referências

ABNT, A.B. de N.T. (2013) NBR15751: Sistemas de aterramento de subestações - Requisitos. Brasil. Available at: https://www.normas.com.br/visualizar/abnt-nbr-nm/28690/abnt-nbr15751-sistemas-de-aterramento-de-subestacoes-requisitos (Accessed: 23 June 2022).

ABNT, A.B. de N.T. (2015) NBR 05419-1: Proteção contra descargas atmosféricas - Parte 1: Princípios gerais. Brasil. Available at: https://www.normas.com.br/autorizar/visualizacao-nbr/34929/identificar/visitante (Accessed: 22 February 2022).

Ahmed, M.I., Habib, A. and Javaid, S.S. (2015) ‘Perovskite Solar Cells: Potentials, Challenges, and Opportunities’, International Journal of Photoenergy, 2015, pp. 1–13. Available at: https://doi.org/10.1155/2015/592308.

Associação Brasileira de Normas Técnicas (ABNT) (2015) NBR5419-3: Poteção contra descargas atmosféricas. Parte 3: Danos físicos a estruturas e perigos à vida. Available at: https://www.normas.com.br/autorizar/visualizacao-nbr/34931/identificar/visitante (Accessed: 3 February 2022).

Baojun Fei, Mingbing Fei and Zhenghong Chen (1999) ‘High electric conduction property of composite copper-clad steel wire’, IEEE Transactions on Electromagnetic Compatibility, 41(3), pp. 196–201. Available at: https://doi.org/10.1109/15.784154.

Charalambous, C.A., Kokkinos, N.D. and Christofides, N. (2014) ‘External Lightning Protection and Grounding in Large-Scale Photovoltaic Applications’, IEEE Transactions on Electromagnetic Compatibility, 56(2), pp. 427–434. Available at: https://doi.org/10.1109/TEMC.2013.2280027.

Chen, Z., Kleijn, R. and Lin, H.X. (2023) ‘Metal Requirements for Building Electrical Grid Systems of Global Wind Power and Utility-Scale Solar Photovoltaic until 2050’, Environmental Science & Technology, 57(2), pp. 1080–1091. Available at: https://doi.org/10.1021/acs.est.2c06496.

Eduful, G. and Atanga, K.J.A. (2020) ‘Conductivity and Selection of Copper Clad Steel Wires for Grounding Applications’, World Academy of Science, Engineering and Technology International Journal of Energy and Power Engineering, 14(5), pp. 106–109. Available at: https://doi.org/10.6084/m9.figshare.12489932.

Gall, D. et al. (2021) ‘Materials for interconnects’, MRS Bulletin, 46(10), pp. 959–966. Available at: https://doi.org/10.1557/s43577-021-00192-3.

Haegel, N.M. et al. (2019) ‘Terawatt-scale photovoltaics: Transform global energy’, Science, 364(6443), pp. 836–838. Available at: https://doi.org/10.1126/science.aaw1845.

Halliday, D., Resnick, R. and Walker, J. (2011) Fundamentos da Física, volume 3: Eletromagnetismo. 8a. Edited by LTC. Rio de Janeiro: LTC.

Hernandez, R.R. et al. (2019) ‘Techno–ecological synergies of solar energy for global sustainability’, Nature Sustainability, 2(7), pp. 560–568. Available at: https://doi.org/10.1038/s41893-019-0309-z.

IEC (2010) IEC 62305-3: International Standard. Available at: https://webstore.iec.ch/preview/info_iec62305-3%7Bed2.0%7Den.pdf (Accessed: 20 November 2020).

Knych, T. et al. (2022) ‘New Graphene Composites for Power Engineering’, Materials, 15(3), p. 715. Available at: https://doi.org/10.3390/ma15030715.

Lv, F. et al. (2019) ‘A Guided Wave Transducer with Sprayed Magnetostrictive Powder Coating for Monitoring of Aluminum Conductor Steel-Reinforced Cables’, Sensors, 19(7), p. 1550. Available at: https://doi.org/10.3390/s19071550.

Mandal, P. and Mondal, S.C. (2018) ‘Investigation of electro-thermal property of Cu-MWCNT-coated 316L stainless steel’, Surface Engineering, 34(9), pp. 697–704. Available at: https://doi.org/10.1080/02670844.2017.1395981.

Nakamura, H. and Managi, S. (2020) ‘Airport risk of importation and exportation of the COVID-19 pandemic’, Transport Policy, 96, pp. 40–47. Available at: https://doi.org/10.1016/j.tranpol.2020.06.018.

Riba, J.-R. et al. (2022) ‘On-Line Core Losses Determination in ACSR Conductors for DLR Applications’, Materials, 15(17), p. 6143. Available at: https://doi.org/10.3390/ma15176143.

Southey, R.D., Jordan, J.T. and Dawalibi, F.P. (2022) ‘Taking the Heat: IEEE Standard 80 and Bimetallic Conductors’, in 2022 IEEE IAS Petroleum and Chemical Industry Technical Conference (PCIC). IEEE, pp. 311–317. Available at: https://doi.org/10.1109/PCIC42668.2022.10181259.

Velasco, A. et al. (2017) ‘Assessment of the Use of Venetian Blinds as Solar Thermal Collectors in Double Skin Facades in Mediterranean Climates’, Energies, 10(11), p. 1825. Available at: https://doi.org/10.3390/en10111825.

Verhoeven, F. et al. (2022) ‘Non-magnetic stainless-steel wire as an armoring wire for power cables’. United States. Available at: https://patents.google.com/patent/US20150017473A1/en (Accessed: 23 March 2022).

Wang, Y. et al. (2021) ‘Conductive Al Alloys: The Contradiction between Strength and Electrical Conductivity’, Advanced Engineering Materials, 23(5). Available at: https://doi.org/10.1002/adem.202001249.

Zhang, X. et al. (2017) ‘Study on Corrosion Behavior of Copper-Clad Steel for Grounding Grids’, in Proceedings of the Advances in Materials, Machinery, Electrical Engineering (AMMEE 2017). Paris, France: Atlantis Press. Available at: https://doi.org/10.2991/ammee-17.2017.4.

Downloads

Publicado

08/04/2025

Edição

Seção

Engenharias

Como Citar

Feasibility study on the replacement of copper conductors with copper-cladsteel conductors in photovoltaic plants. (2025). Latin American Journal of Energy Research, 12(2), 19-27. https://doi.org/10.21712/lajer.2025.v12.n2.p19-27

Artigos Semelhantes

1-10 de 54

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.